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Abstract In this paper, the linear absorber is proposed
to reduce the vibration of a nonlinear dynamical system
at simultaneous primary resonance and the presence of
1:1 internal resonance. This leads to a two-degree-of-
freedom system subjected to external excitation force.
The method of multiple scales perturbation technique
is applied throughout to determine the analytical solu-
tion up to first-order approximations. The stability of
the system near the one of the worst resonance case
is studied using the frequency response equations. The
effects of the different system and absorber parameters
on the behavior of the main system are studied numer-
ically. For validity, the numerical solution is compared
with the analytical solution and gets a good agreement.
Effectiveness of the absorber (Ea) is about 800 for
the nonlinear vibrating system. The simulation results
are achieved using MATLAB programs. At the end of
the work, the comparison with the available published
work is reported.
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1 Introduction

There are several strategies to reduce the vibration
which occurring in the most important dynamical sys-
tems such as linear and nonlinear time-delayed position
feedback, passive controller (absorbers), the nonlinear
saturation controller (NSC), the positive position feed-
back (PPF) controller, cubic feedback control laws, and
the velocity feedback control law. Warminski et al. [1]
illustrated the numerical and experimental studies for
different types of active controllers applied to nonlin-
ear beam models. The results for a single-beam system
show that NSC and PPF controllers are the most effec-
tive for assumed conditions of the plant.

El-Ganaini et al. [2] studied the positive position
feedback controller to suppress the vibration amplitude
of a nonlinear dynamic model at primary resonance
and the presence of 1:1 internal resonance. Saeed et
al. [3] presented the nonlinear time delay saturation-
based controller for the simultaneously resonance case
(Ω ∼= ω1 and ω1 ∼= ω2) of a dynamical system. It is
seen that the vibration can be suppressed at some val-
ues of time delay. These values form a so called “vibra-
tion suppression region” which we found as a periodic
function of time delay. Yaman and Sen [4] show that
the primary structure consists of a flexible beam which
has a single degree of freedom, and is subjected to a
vertical sinusoidal base excitation. The primary objec-
tive of this study is to determine the effectiveness of
pendulum-type passive vibration absorber attached to
a primary structure whose orientation varies. Eissa and
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Amer [5] controlled the vibration of the first mode of
the cantilever beam subjected to a primary and sub-
harmonic resonance (Ω1 ∼= 1 and Ω2 ∼= 2) by adding
a feedback cubic nonlinear term

(
T = Gx3

)
, which can

be used to control the amplitude of the system to 33 %.
Oueini et al. [6] studied a nonlinear absorber based on
saturation phenomena as a vibration absorber for a lin-
ear model of a cantilever beam. The influences of damp-
ing of the controller and loops gains have been shown
using multiple scale method. Also, the sensitivity on
the initial conditions has been checked too. The positive
position feedback (PPF) controller applied for a flex-
ible manipulator is presented by Shan et al. [7]. They
presented several vibration modes in the control strat-
egy taking into account a linear mathematical model
of the plant. The PPF control has been compared with
the algorithm of velocity feedback. An experimental
study shows that only PPF algorithm is able to work
properly, while slewing process is realized. Hegazy [8]
studied the dynamic behavior and chaotic motion of
a string-beam coupled system subjected to parametric
excitation. The case of 3:1 internal resonance between
the modes of the beam and string in the presence of
sub-harmonic resonance for the beam was considered
and examined.

Zhang et al. [9] investigated the chaotic dynam-
ics and bifurcations of a simply supported symmetric
cross-ply composite laminated piezoelectric rectangu-
lar plate subject to the transverse, in-plane excitations,
and the excitation loaded by piezoelectric layers. The
case of 1:2 internal resonance and primary parametric
resonance is considered.

Refs. [10–17] applied different type of controllers
as passive and active control to reduce the vibration of
the nonlinear dynamical system.

In this paper, we modified the work of Refs [1,2] and
introduced the linear absorber to suppress the vibration
of a nonlinear dynamical system subjected to external
excitation. MSPT to the first-order approximations is
applied to analyze the response of the modified system
near the simultaneous primary and internal resonance
to obtain the semi-closed form solution. The stability
of the system is investigated near this worst simultane-
ous resonance case applying frequency response equa-
tions. Some recommendations regarding the different
parameters of the system are reported and the effect
of the absorber on system behavior is given numeri-
cally. Comparison with the available published work is
reported.

2 Nonlinear dynamical system model

The investigated nonlinear ordinary differential equa-
tion which described the nonlinear dynamical system
[1,2] is given as

ü + 2μω1u̇ + ω2
1u + βu3 − δ(uu̇2 + u2ü)

+ζ(u̇ − v̇) + α(u − v) = f cos(Ωt) (1)

Here, we introduced a linear tuned mass absorber which
connected to the main system through a control law.
Then the modified equations of motion are two-coupled
differential equations, one nonlinear and one linear, by
the same method in [18] as the following:

ü + 2μω1u̇ + ω2
1u + βu3 − δ(uu̇2 + u2ü)

+ζ(u̇ − v̇) + α(u − v) = f cos(Ωt) (2)

v̈ + 2ζ1ω2(v̇ − u̇) + ω2
2(v − u) = 0 (3)

where u and v are independent generalized coordi-
nates correspond to the two degrees of the system,
μ, ζ , and ζ1 are damping coefficient of the system
and absorber, f and � are amplitude and frequency
of external excitation force applied to the system by
forte object, α is a linear parameter, β and δ are non-
linear parameters, ω1 and ω2 are natural frequencies
of the system and the absorber, respectively, where
u(0) = 0, u̇(0) = 0, v(0) = 0, and v̇(0) = 0.

Suppose that μ = εμ̂, β = ε−1β̂, δ = ε−1δ̂, f =
ε2 f̂ , ζ = εζ̂ , ζ1 = εζ̂1, α = εα̂ where ε is a small
dimensionless book-keeping perturbation parameter
and 0 < ε � 1. Then the government equations for
the dynamical system with the absorber can be written
as

ü + 2εμ̂ω1u̇ + ω2
1u + ε−1β̂u3 − ε−1δ̂(uu̇2 + u2ü)

+εζ̂ (u̇ − v̇) + εα̂(u − v) = ε2 f̂ cos(Ωt) (4)

v̈ + 2εζ̂1ω2(v̇ − u̇) + ω2
2(v − u) = 0 (5)

2.1 Mathematical analysis (multiple scales method)

Applying MSPT [19,20] is used to obtain a uniformly
valid, asymptotic expansion of the solutions for Eqs.
(4)–(5)

The asymptotic approximate solutions of Eqs. (4)–
(5) are assumed in the forms:

u(t, ε) = εu1(T0, T1) + ε2u2(T0, T1) + O(ε3) (6)

v(t, ε) = εv1(T0, T1) + ε2v2(T0, T1) + O(ε3) (7)
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The derivatives will be in the form:
d

dt
= dT0

dt

∂

∂T0
+ dT1

dt

∂

∂T1
+ · · ·

= D0 + εD1 + · · · (8)

d2

dt2 = D2
0 + 2εD0 D1 + · · · (9)

where Tn = εnt and Dn = ∂/∂Tn (n = 0, 1).
Substituting Eqs. (6)–(9) into Eqs. (4)–(5) and equat-

ing the coefficients of equal power of (ε) lead to

O(ε1)
(

D2
0 + ω2

1

)
u1 = 0 (10a)

(
D2

0 + ω2
2

)
v1 = ω2

2u1 (10b)

O(ε2)
(

D2
0 + ω2

1

)
u2 = −2D0 D1u1 − 2μ̂ω1 D0u1 − β̂u3

1

+ δ̂
[
u1(D0u1)

2 + u2
1 D2

0u1

]
− ζ̂ [D0u1 − D0v1]

− α̂ [u1 − v1] + f̂ cos(�t) (11a)
(

D2
0 + ω2

2

)
v2 = −2D0 D1v1

− 2ζ̂1ω2 [D0v1 − D0u1] + ω2
2u2 (11b)

The general solution of Eq. (10) represents the zeroth
order approximation and can be written in the form:

u1(T0, T1) = A1 (T1) exp (iω1T0) + cc. (12)

v1(T0, T1) = A2 (T1) exp (iω2T0)

+Γ A1 (T1) exp (iω1T0) + cc. (13)

Where the quantities A1(T1) and A2(T1) are unknown
function in T1 at this stage of the analysis , cc represents
the complex conjugate of the previous terms and Γ =

ω2
2(

ω2
2−ω2

1

) .

Substituting Eqs. (12)–(13) into Eq. (11) and elim-
inating the secular terms, then the general solution of
Eq. (11) which represents the first-order approximation
is obtained as follows:

u2 = B1 exp (iω1T0) +
[

β̂ A3
1+2δ̂ω2

1 A3
1

8ω2
1

]

exp (3i ω1T0)

+
[

iω2ζ̂ A2 + α̂A2(
ω2

1 − ω2
2

)

]

exp (iω2T0)

+ f̂

2
(
ω2

1 − �2
) exp (i �T0) + cc. (14)

v2 = B2 exp (iω2T0)

+
[
−2iω1 D1Γ A1−2i ζ̂1ω1ω2(Γ − 1)A1(

ω2
2 − ω2

1

)

]

exp (i ω1T0)

+
⎡

⎣
ω2

2

(
β̂ A3

1 + 2δ̂ω2
1 A3

1

)

8ω2
1

(
ω2

2 − 9ω2
1

)

⎤

⎦ exp (3i ω1T0)

+
[

ω2
2 f̂

2
(
ω2

1 − �2
) (

ω2
2 − �2

)

]

exp (i �T0) + cc.

(15)

where the quantities B1(T1) and B2(T1) are unknown
function in T1 at this stage of the analysis , cc represents
the complex conjugate of the previous terms.

Then we can get the analytical solution of Eqs. (4)–
(5) by substituting Eqs. (12)–(15) into Eqs. (6)–(7).

3 Stability using frequency response equation

In this work, the simultaneous primary and internal
resonance case (Ω ∼= ω1, ω2 ∼= ω1) , which is one
of the worst resonance case (confirmed numerically),
has been chosen to study the stability, of the system
of Eqs. (4)–(5), at the first-order approximation. Intro-
ducing the detuning parameters σ1 and σ2

(
σm = εσ̂m

)

according to

Ω ∼= ω1 + εσ̂1, ω2 ∼= ω1 + εσ̂2 (16)

Substituting Eq. (16) into Eq. (11) and eliminating the
secular terms lead to the solvability conditions for the
first-order approximation, hence the following differ-
ential equations are obtained:

2i ω1 D1 A1 =
[
−2i μ̂ ω2

1 A1−3β̂ A2
1 Ā1−2δ̂ω2

1 A2
1 Ā1

−iω1ζ̂ A1 − α̂A1

]
+ f̂

2
exp

(
i σ̂1T1

)

+
[
iω2ζ̂ A2 + α̂A2

]
exp

(
i σ̂2T1

)
(17)

2iω2 D1 A2 =
[
−2i ζ̂1ω

2
2 A2

]

+
[
2i ζ̂1ω1ω2 A1

]
exp

(−i σ̂2T1
)

(18)

From Eq. (8) and multiplying both sides by 2iωm(m =
1, 2), we can express the derivative of Am(T1) with
respect to t as

2i ωm
dAm

dt
= ε2ωmi D1 Am + O(ε2) (19)

To analyze the solution of Eqs. (17) and (18), it is con-
venient to express Am in the polar form

Am(T1) = 1

2
âm exp (iγm) am = εâm (20)
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where am and γm are real functions of T1. Inserting Eqs.
(17), (18), and (20) into Eq. (19) and equating the real
and imaginary parts yield

ȧ1 =
[
−μω1a1 − ζ

2
a1

]
+

[
ω2ζ

2ω1
a2

]
cos (θ2)

+
[

α

2ω1
a2

]
sin (θ2)+ f

2ω1
sin (θ1) (21)

γ̇1a1 =
[

3β

8ω1
a3

1 + δω1

4
a3

1 + α

2ω1
a1

]
−

[
α

2ω1
a2

]
cos (θ2)

+
[
ω2ζ

2ω1
a2

]
sin (θ2) − f

2ω1
cos (θ1) (22)

ȧ2 = [−ζ1ω2a2] + [ζ1ω1a1] cos (θ2) (23)

γ̇2a2 = − [ζ1ω1a1] sin (θ2) (24)

where θ1 = σ̂1T1 −γ1 = σ1T0 −γ1, θ2 = σ̂2T1 +γ2 −
γ1 = σ2T0 + γ2 − γ1.

The steady-state solution of our dynamical system
corresponding to the fixed point of Eqs. (21)–(24) is
obtained when ȧm = 0 and θ̇m = 0, then we get the
frequency response equations (FRE) for the practical
case (a1 �= 0, a2 �= 0) as follows:

[
μω1a1 + ζ

2
a1

]
=

[
ω2ζ

2ω1
a2

]
cos (θ2)

+
[

α

2ω1
a2

]
sin (θ2) + f

2ω1
sin (θ1) (25)

σ1a1−
[

3β

8ω1
a3

1 + δω1

4
a3

1 + α

2ω1
a1

]
=−

[
α

2ω1
a2

]
cos (θ2)

+
[

ω2ζ

2ω1
a2

]
sin (θ2) − f

2ω1
cos (θ1) (26)

[ζ1ω2a2] = [ζ1ω1a1] cos (θ2) (27)

(σ1 − σ2) a2 = − [ζ1ω1a1] sin (θ2) (28)

From Eqs. (27) and (28), we get

cos (θ2) =
[
ω2a2

ω1a1

]
(29)

sin (θ2) =
[
− (σ1 − σ2) a2

ζ1ω1a1

]
(30)

Squaring and adding Eqs. (29) and (30), we get

ζ 2
1 ω2

1a2
1 =

[
ζ 2

1 ω2
2a2

2

]
+

[
(σ1 − σ2)

2 a2
2

]
(31)

Inserting (29) and (30) into (25) and (26), we get
[
μω1a1 + ζ

2
a1

]
−

[
ω2

2ζa2
2

2ω2
1a1

]

+
[

α (σ1 − σ2) a2
2

2ω2
1ζ1a1

]

= f

2ω1
sin (θ1) (32)

σ1a1 −
[

3β

8ω1
a3

1 + δω1

4
a3

1 + α

2ω1
a1

]

+
[

αω2a2
2

2ω2
1a1

]

+
[

ω2ζ (σ1−σ2) a2
2

2ω2
1ζ1a1

]

=− f

2ω1
cos (θ1)

(33)

Squaring and adding Eqs. (32) and (33), we get
{[

μω1a1+ ζ

2
a1

]
−

[
ω2

2ζa2
2

2ω2
1a1

]

+
[

α (σ1 − σ2) a2
2

2ω2
1ζ1a1

]}2

+
{
σ1a1 −

[
3β

8ω1
a3

1 + δω1

4
a3

1 + α

2ω1
a1

]

+
[

αω2a2
2

2ω2
1a1

]

+
[

ω2ζ (σ1 − σ2) a2
2

2ω2
1ζ1a1

]}2

= f 2

4ω2
1

(34)

Then the frequency response equations that used to
describe the system are Eqs. (31) and (34).

3.1 Stability of nonlinear solution

To determine the stability of the steady-state solution,
one lets

am = am0 + am1, θm = θm0 + θm1 (35)

where am0 and θm0 are the solutions of Eqs. (21)–(24)
and am1andθm1 are perturbations which are assumed
to be small compared with a0 and θ0. Substituting Eq.
(35) into Eqs. (21)–(24) and keeping only the linear
terms in am1 and θm1, we obtain

ȧ11 =
[
−μω1 − ζ

2

]
a11 +

[
f

2ω1
cos (θ10)

]
θ11

+
[
ω2ζ

2ω1
cos (θ20) + α

2ω1
sin (θ20)

]
a21

+
[
−ω2ζ

2ω1
a20 sin (θ20)+ α

2ω1
a20 cos (θ20)

]
θ21

(36)

θ̇11 =
[

σ1

a10
− 9βa10

8ω1
− 9δω1a10

8
− α

2a10ω1

]
a11

+
[
− f sin (θ10)

2a10ω1

]
θ11
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Fig. 1 Time trace of the
response and phase-plane
diagrams of nonlinear
system without absorber for
primary resonance case
(� ∼= ω1)

+
[
−ω2ζ sin (θ20)

2a10ω1
+ α cos (θ20)

2a10ω1

]
a21

+
[
−ω2ζa20 cos (θ20)

2a10ω1
− αa20 sin (θ20)

2a10ω1

]
θ21

(37)

ȧ21 = [ζ1ω1 cos (θ20)] a11 + [−ζ1ω2] a21

+ [−ζ1ω1a10 sin (θ20)] θ21 (38)

θ̇21 =
[

σ1

a10
− 9βa10

8ω1
− 9δω1a10

8
− α

2a10ω1

−ζ1ω1 sin (θ20)

a20

]
a11

+
[
− f sin (θ10)

2a10ω1

]
θ11

+
[
(σ2−σ1)

a20
− ω2ζ sin (θ20)

2a10ω1
+ α cos (θ20)

2a10ω1

]
a21

+
[
−ω2ζa20 cos (θ20)

2a10ω1
− αa20 sin (θ20)

2a10ω1

−ζ1ω1a10 cos (θ20)

a20

]
θ21 (39)

The eigenvalues of the above system of equations
are given by the equation

λ4 + R1λ
3 + R2λ

2 + R3λ + R4 = 0 (40)

where R1, R2, R3, and R4 are constants in the para-
meters (a1, a2, μ, ζ, ζ1, σ1, σ2, α, and β, f, δ, ω1, ω2,

θ1, θ2). If the real part of each eigenvalues is negative,
the corresponding equilibrium solution is asymptoti-
cally stable and otherwise becomes unstable. Accord-
ing to the Routh–Hurwitz criterion, the necessary and
sufficient conditions for all the roots of (40) to possess
negative real parts are

r1 >0, r1r2−r3 >0, r3 (r1r2−r3)−r2
1 r4 >0 and r4 >0.

4 Numerical results

In this section, the differential equations of nonlin-
ear dynamical system (main system without and with

absorber) at primary and internal resonance cases are
solved numerically applying Rung–Kutta fourth-order
method using MATLAB 7.14.0.739 (R2012a) package
(ode45) at the selected values (μ = 0.01, ω1 = 3, δ =
1, β = 14.5, f = 0.05,� = ω1, ζ1 = 0.001, ω2 =
ω1, α = 0.9, ζ = ζ1ω2/ζ1ω25.5).

It can be seen from Fig. 1 that the steady-state
amplitude of the main system (u) without absorber is
about 320 % of the excitation force amplitude f with
slight chaotic limit cycles. The steady-state amplitude
of the main system (u) is decreasing to about 0.4 %
of the excitation force amplitude f when we added the
absorber, and the steady-state amplitude of the absorber
(v) is about 120 % of the excitation force amplitude f
as shown in Fig. 2.

It is worth to notice that from the Figs. 1 and 2 that
the steady-state amplitude of the main system with the
absorber was suppressed by about 99.875 % from its
value without absorber. This means that the effective-
ness of the absorber Ea(Ea = steady-state amplitude of
the main system without absorber / steady-state ampli-
tude of the main system with absorber) is about 800 for
the main system (u).

4.1 Comparison between analytical and numerical
solution

Figures 3 and 4 represent the comparison between ana-
lytical solution given by Eqs. (21–24) and the numerical
solution of Eqs. (2–3) for nonlinear dynamical system
with absorber for chosen values of the system para-
meters that are presented graphically in Fig. 2. The
dashed lines show the modulation of the amplitude for
the generalized coordinates u and v. However, the con-
tinuous lines represent the time history of vibrations
which were obtained numerically as solution of the
original equations of the nonlinear dynamical system
with absorber.
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Fig. 2 Time trace of the
response and phase-plane
diagrams of nonlinear
system with absorber for
Primary and internal
resonance case
(� ∼= ω1, ω2 ∼= ω1)

Fig. 3 Comparison
between the analytical and
numerical solutions of the
nonlinear system with
absorber

Fig. 4 Comparison
between the analytical and
numerical solutions of the
absorber

4.2 Frequency response curve with the detuning
parameter (σ1)

The effects of different parameters were investigated
by solving the frequency response equations (31) and
(34) numerically as shown in Figs. 5, 6, 7, 8, 9, 10, 11
and 12. The frequency response curves (FRC) consist
of two branches: the solid line represents the stable

solution while the dashed line represents the unstable
solution, and accordingly their multi-valued solutions.
Figure 5 represents the main figure for the selected
practical case (a1 �= 0, a2 �= 0). The steady-state
amplitudes a1 and a2 are presented against detuning
parameter σ1. The jump phenomenon is illustrated for
example in Fig. 5 (a1 & σ1). As σ1 is reduced from
a value corresponding to the point A, the amplitude
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Fig. 5 Effects of the
detuning parameter σ1

Fig. 6 Effects of increasing
the external forcing
amplitude f (a1 and a2
against σ1)

Fig. 7 Effects of the natural
frequency ω1 (a1 and a2
against σ1)

remains to approximately zero until the point B is
reached. As σ1 is decreased further, a jump takes place
from the point B to the point C . Then, as σ1 is decreased
further, the amplitude decreases slowly to the point D.

4.2.1 Effect of the external forcing amplitude f and
the natural frequency ω1

From Figs. 6 and 7, the steady-state amplitude of the
main system (a1) is monotonic increasing function of
the external excitation force amplitude f and the nat-
ural frequency ω1. For decreasing ω1, the curve that is
bent to the right leads to the occurrence of the jump
phenomena.

Also, Fig. 6 shows that the steady-state amplitude
of the absorber (a2) is monotonic increasing function
of the external excitation force amplitude f but for
increasing values of natural frequency ω1, the steady-

state amplitude of the absorber (a2) is trivial due to the
occurrence of saturation phenomena as shown in Fig. 7.

4.2.2 Effect of the damping coefficients μ and ζ1

Figures 8 and 9 illustrated that the steady-state ampli-
tude of the main system (a1) is decreased when the
damping coefficients μ and ζ1 are increased.

Furthermore, Fig. 8 presented that the steady-state
amplitude of the absorber (a2) is monotonic decreasing
function of the damping coefficients μ but monotonic
decreasing function for of the damping coefficients ζ1

as shown in Fig. 9.

4.2.3 Effect of the linear parameter α

From Fig. 10, the steady-state amplitude of the main
system (a1) is shifted to right and the steady-state
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Fig. 8 Effects of increasing
the damping coefficient μ

(a1 and a2 against σ1)

Fig. 9 Effects of increasing
the damping coefficient ζ1
(a1 and a2 against σ1)

Fig. 10 Effects of the linear
parameter α (a1 and a2
against σ1)

Fig. 11 Effects of the
nonlinear parameter β (a1
and a2 against σ1)

Fig. 12 Effects of the
nonlinear parameter δ (a1
and a2 against σ1)
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Fig. 13 Effects of the
detuning parameter σ2

Fig. 14 Effects of
increasing the external
forcing amplitude f (a1 and
a2 against σ2)

Fig. 15 Effects of
increasing the damping
coefficient μ (a1 and a2
against σ2)

amplitude of the absorber (a2) is decreased when the
linear parameter α is increased.

4.2.4 Effect of the nonlinear parameters β and δ

Figures 11 and 12 show that for increase or decrease of
the nonlinear parameters β and δ produce either hard
or soft spring, respectively, that leads to occurrence of
jump phenomena for the steady-state amplitude of the
main system (a1) but for increasing values of β and δ,
the steady-state amplitude of the absorber (a2) is trivial
due to the occurrence of saturation phenomena

4.3 Frequency response curve with the detuning
parameter (σ2)

Figure 13 represents the main figure for the selected
practical case (a1 �= 0, a2 �= 0). The steady-state
amplitudes a1 and a2 are presented against detuning

parameter σ2. The steady-state amplitude a1 has
a continuous symmetrical curve at σ2 = 0. But the
steady-state amplitude a2 will separate at σ2 = 0 and
consists of two branches of the curve.

From Figs. 14, 15, 16, 17, 18, 19, and 20, the steady-
state amplitude of the main system (a1) is monotonic
increasing function of the external excitation force
amplitude f and the damping coefficient ζ1 with the
increasing in the separation distance for nonzero solu-
tion at σ2 = 0. But the steady-state amplitude of the
main system (a1) is monotonic decreasing function of
the damping coefficient μ, natural frequency ω1, the
linear parameter α, and nonlinear parameters β and
δ with the decreasing in the separation distance for
nonzero solution at σ2 = 0.

Moreover, the steady-state amplitude of the absorber
(a2) is increased when the external excitation force
amplitude f and the damping coefficient ζ1 are incre-
ased. Also, for increasing values of natural frequency
ω1 and the linear parameter α, the steady-state ampli-
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Fig. 16 Effects of
increasing the damping
coefficient ζ1 (a1 and a2
against σ2)

Fig. 17 Effects of the
natural frequency ω1 (a1
and a2 against σ2)

Fig. 18 Effects of the linear
parameter α (a1 and a2
against σ2)

Fig. 19 Effects of the
nonlinear parameter β (a1
and a2 against σ2)

Fig. 20 Effects of the
nonlinear parameter δ (a1
and a2 against σ2)
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Fig. 21 Force-amplitude
response curves (a1 and a2
against f )

tude of the absorber (a2) is decreased. But for increas-
ing values of μ, β, and δ, the steady-state amplitude
of the absorber (a2) is trivial due to the occurrence of
saturation phenomena

4.4 Force response curve with the external force ( f )

In Fig. 21, the force response curve of both the main
system and the absorber is presented at the presence
of 1:1 internal resonance. Moreover, from the histories
of a1 and a2 as the excitation amplitude f slowly is
increased from zero and 0.002 respectively.

5 Conclusions

The absorber which is the one of the most common
methods of passive vibration control has been presented
to reduce the vibration of the nonlinear system. This
vibrating system subject to external excitation force
has been studied for the primary resonance in the pres-
ence of 1:1 internal resonance. The method of multi-
ple scales perturbation is applied to solve the nonlin-
ear differential equations describing the system up to
the first-order approximation near primary and inter-
nal resonance case of this system. Then, from the ana-
lytical analysis, the frequency response equations are
obtained and the conditions of stability are considered.
The numerical analysis is investigated the performance
of the control law and the effectiveness of the absorber.
The analyses are revealed that

The primary resonance case (Ω ∼= ω1) is one of
the worst resonance cases for the nonlinear dynamical
system and we must avoid it.

The type of the passive control (absorber) is very
suitable to suppress the high amplitude vibration of
the nonlinear system when the natural frequency of the

absorber is properly tuned to the excitation frequency
(Ω ∼= ω2).

The efficiency of the absorber to control the vibrat-
ing system (Ea) is about 800. Where the steady-state
amplitude of the main system (u) can be reduced to
99.875 % of the main value.

The steady-state amplitude of the main system (u)

with the detuning parameter (σ1) is monotonic increas-
ing functions of f, ω1, and monotonic decreasing func-
tions of μ, ζ1.

The steady-state amplitude of the main system (u)

with the detuning parameter (σ2) is monotonic increas-
ing functions of f, ζ1, and monotonic decreasing func-
tions of μ,ω1, α, β, δ.

These results indicate the good effectiveness of the
suggested absorber compared to the PPF controller in
Ref. [2] regarding the amplitude reduction.

5.1 Comparison with published work

Literature review [1] illustrated the numerical and
experimental studies of four types active controllers.
The results of the dynamical system show that the non-
linear saturation controller (NSC) and the positive posi-
tion feedback (PPF) are the most effective for assumed
conditions of the considered plant. Ref. [2] studied the
coupled nonlinear dynamical system with PPF con-
troller subjected to external force at simultaneous pri-
mary and internal resonance case. They found that the
steady-state amplitude of the system (u) is reduced to
about 98.5 % from its value without control. The effec-
tiveness of the PPF controller for this system is about
Ea = 625 and they found that all predictions from ana-
lytical solutions are in good agreement with the numer-
ical simulation.

In this paper, the same nonlinear dynamical sys-
tem in Refs. [1,2] is investigated with replacing the
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controller system by a passive controller instated of
active controller. With the suggested passive controller,
the steady-state amplitude of the main system (u) is
reduced to 99.875 % from its value without absorber.
This means that the effectiveness of the absorber Ea is
about 800 for the main system (u) at the simultaneous
primary and internal resonance case. These results indi-
cate the good effectiveness of the suggested absorber in
decreasing the vibration of the amplitude for the main
system (u) compared to the PPF controller in Ref. [2]
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